Water Chromium (VI) Content Assay Kit **Note:** Take two or three different samples for prediction before test. **Operation Equipment:** Spectrophotometer **Cat No:** BC2830 **Size:** 50T/48S #### **Components:** Reagent I: Liquid 4mL×1, store at room temperature. Reagent II: Powder×1, store at 4°C. Dissolve with 2.8mL of acetone (self-provided) before use. It can't be used after the color becomes darker. Standard: Liquid 10 mL×1, 2 μmol/mL Cr⁶⁺, store at room temperature. Dilute 160 times before use, prepare as 0.0125 μmol/mL standard solution. # **Description:** Cr⁶⁺ mainly comes from sewage and exhaust gas discharged from electroplating, smelting, surface treatment industries. Cr⁶⁺ enters the human body through the digestive tract, respiratory tract, skin, and mucous membranes, causing injury, even genetic mutation and carcinogenesis. In an acidic environment, Cr^{6+} interacts with diphenylcarbazide to form a purple-red complex with characteristic absorption at 540 nm. # Required but not provided: Spectrophotometer, transferpettor, 1mL glass cuvette, acetone and distilled water. ## **Protocol:** 1. Preheat spectrophotometer for 30 min, adjust wavelength to 540nm, set zero with distilled water. #### 2. Sample table: | Reagents | Blank tube (B) | Test tube (T) | Standard tube (S) | |---------------------------|----------------|---------------|-------------------| | Distilled water (μL) | 1000 | | | | 0.2 μmol/mL standard (μL) | | | 1000 | | Water sample (μL) | | 1000 | | | Reagent I (μL) | 50 | 50 | 50 | | Reagent II (μL) | 50 | 50 | 50 | Mix thoroughly, react for 10 min at room temperature, and then detect the absorbance at 540nm, record A_B , A_S , A_T . $\Delta A_{T=}$ $A_{T-}A_{B}$, $\Delta A_{s=}$ A_s - A_B . ## Calculation: Cr^{6+} (µmol /mL) = [$C_S \times (A_T - A_B) \div (A_S - A_B)$] =0.0125×($A_T - A_B$) $\div (A_S - A_B)$ ### C_S : 0.0125 µmol/mL; #### Note: - 1. Directly measure colorless water samples; - 2. Colored water sample: Take 1mL of water sample, add 50 μ L of Reagent I, cover, mix well and place in a boiling water bath for 2 minutes, fade; after cooling, add 50 μ L of Reagent II, mix thoroughly; leave at room temperature for 10 minutes. The absorbance is measured at 540 nm and recorded as A_T . - 3. When the iron in the water sample is about 50 times of Cr^{6+} , it will cause yellow and interfere with the measurement. It is not suitable to use this kit for measurement; 10 times of vanadium can cause interference, but the color of vanadium and the reagent will disappear after 20min; Molybdenum and mercury sinks above 200 mg/L cause interference. - 4. Cr⁶⁺ is toxic ions of heavy metals. Pay attention to safety during the measurement. Wear masks and gloves to avoid inhalation or contamination. - 5. When the absorbance is greater than 0.9, it is recommended to determine the sample after dilution. #### **Related Products:** BC2820/BC2825 Water Mercury Ion(Hg²⁺) Content Assay Kit BC2850/BC2855 Total Phosphorus Content Assay Kit BC4350/BC4355 Tissue Iron Content Assay Kit BC4380/BC4385 Blood Ammonia Content Assay Kit ## **Technical Specifications:** The detection limit: 0.0003491 μmol/mL Linear range: 0.00039-0.025 μmol/mL