

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

Acid Invertase (AI) Activity Assay Kit

Note: Before the experiment, it is recommended to select 2-3 sample with large expected differences for pre-experiment.

Operation Equipment: Spectrophotometer

Catalog Number: BC0560

Size: 50T/24S

Product Composition: Before use, please carefully check whether the volume of the reagent is consistent with the volume in the bottle. If you have any questions, please contact Solarbio staff in time.

	Reagent name	Size	Storage	
59	Extract Solution	Solution 30 mL×1	2-8°C	
	Reagent I	Solution 65 mL×1	2-8°C	
	Reagent II	Powder×1	2-8°C	
	Reagent III	Solution 35 mL×1	2-8°C	
	Standard	Powder×1	2-8°C	

Solution preparation:

- Reagent II: Add 40 mL of Reagent I to fully dissolve for standby when the solution will be used. Unused reagents stored at 2-8 °C for 4 weeks.
- 2. Standard solution: 10 mg of glucose. Add 1 mL of distilled water with filly dissolve before use to prepare 10 mg/mL glucose standard solution for standby, stored at 2-8 °C for 4 weeks.

Product Description

Invertase (Ivr) catalyzes the irreversible decomposition of sucrose into fructose and glucose, which is one of the key enzymes in sucrose metabolism of higher plants. According to the optimal pH, Ivr can be divided into two types: acid invertase (AI) and neutral invertase (NI). AI (EC 3.2.1.26) mainly exists in cell vacuole or free space, and the optimal pH is 4.5-5.0 (acid). It can regulate the utilization of sucrose in vacuole and the accumulation of sugar in fruit by degrading sucrose in vacuole.

AI catalyzes the degradation of sucrose to produce reducing sugar, and further reacts with 3,5-dinitrosalicylic acid to form brownish red amino compound, which has a characteristic light absorption at 540 nm. the increase rate of light absorption at 540 nm in a certain range is in direct proportion to AI activity.

Reagents and Equipment Required but Not Provided

Spectrophotometer, water-bath/constant temperature incubator, desk centrifuge, adjustable pipette, 1 mL glass cuvette, mortar/homogenizer, ice and distilled water.

Procedure

I. Sample preparation:

BC0560 -- Page 1 / 4

Weigh about 0.1 g of tissue, add 1 mL of Extract solution for ice bath homogenization. Centrifuge at $12000 \times g$ for 10 minutes at 4°C, take the supernatant and place it on ice for test.

II. Determination steps:

- 1. Preheat spectrophotometer more than 30 minutes, adjust wavelength to 540 nm and set zero with distilled water.
- 2. Dilute the standard solution to 1.0, 0.8, 0.6, 0.4, 0.2 and 0 mg/mL of glucose standard solution (0mg/mL is blank tube).
- 3. Preheat some Reagent I and Reagent II at 37 °C for more than 10 minutes.

i. Sumaira difution usic.				
Serial	Pre dilution	Standard solution	Distilled water	Diluted concentration
Number	concentration (mg/mL)	volume (µL)	volume (µL)	(mg/mL)
19	10	150	1350	1
2	1	400	100	0.8
3	1 5	300	200	0.6
4	1	200	300	0.4
5	0.4	200	200	0.2
6		-	400	0 (Blank tube)

4. Standard dilution table:

Note: Each standard tube in the following experiment requires 200µL of standard solution volume (be careful not to directly test the absorbance value in this step).

5. Operation table (add the following reagents in sequence in the 1.5 mL EP tube):

Reagent Name (µL)	Test tube (T)	Control tube (C)	Standard tube (S)
Sample	200	200	-
Reagent I		800	-
Reagent II	800	SOLE SOL	800
Standard solution	-	4 - Y	200

Mix well. After 30 minutes of accurate water bath at 37°C, boil for about 10 minutes (Wrap the sealing film to prevent bursting). After water cooling, mix well (to ensure constant concentration). Centrifuge at 12000 ×g for 5 minutes at 4°C and take the supernatant.

Supernatant	900	900	900
Reagent III	500	500	500

Mix well and boil for about 10 minutes (wrap with sealing film to prevent bursting). After cooling with running water, mix thoroughly and measure the absorbance values of each tube at 540nm, which are recorded as A_T , A_C , A_S , and A_B (0 mg/mL). $\Delta A_T=A_T - A_C$, $\Delta A_S=A_S - A_B$. The standard curve only needs to be done 1-2 times.

III. Calculation of AI activity:

1. Establishment of standard curve:

BC0560 -- Page 2 / 4

Tel: 86-010-50973105 https://www.solarbio.net

Plot the standard curve y=kx+b with glucose standard concentration on the x-axis and ΔA standard on

the y-axis. According to the standard curve, substitute ΔA into the equation to obtain x (mg/mL).

- 2. Calculation of AI activity:
- 1) Calculate by protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the production of 1 µg of reducing sugar per minute at 37°C every milligram of protein.

AI activity(U/mg prot) = $(x \times Vs \times 1000) \div (Vs \times Cpr) \div T \times F = 33.3 \times x \div Cpr \times F$

2) Calculate by sample weight:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the production of 1 µg of reducing sugar per minute at 37°C every gram of tissue.

AI activity (U/g weight) = $(x \times Vs \times 1000)$ ÷ $(W \times Vs \div Ve)$ ÷ $T \times F = 33.3 \times x \div W \times F$

1000: Unit conversion factor, $1 \text{ mg/mL} = 1000 \mu \text{g/mL}$;

Vs: The volume of sample added into the reaction system, 0.2 mL;

Ve: Add the volume of extract solution, 1 mL;

Cpr: Concentration of sample protein, mg/mL;

W: Sample weight, g;

T: Reaction time: 30 minutes.

F: Dilution ratio.

Note

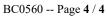
- 1. If Reagent III is added and there is turbidity after boiling for 10 minutes, it is recommended to remove the precipitate by centrifugation and take the supernatant to determine the absorbance.
- 2. If ΔA is greater than 1.5, the sample can be measured after diluted with distilled water (multiply the corresponding dilution times in the calculation formula).
- 3. Because the Extract solution contains a certain concentration of protein (about 1mg/mL), the protein content of the Extract solution itself needs to be subtracted when determining the protein concentration of the sample.

Experimental example:

1. Take 0.1g of the pistil of yellow flower and add 1 mL of Extract solution for homogenization and grinding, take the supernatant and then operate according to the determination steps. $\Delta A_T =$ 0.918, $\Delta A_C = 0.752$, $\Delta A = A_T$ - $A_C = 0.918$ -0.752 = 0.166, bring in the standard curve y = 1.3885x - 0.1929, calculate x = 0.25848.

AI activity (U / g weight) = $33.3 \times x \div W \times dilution ratio = 33.3 \times 0.25848 \div 0.1 = 86.074 U/g weight.$

BC0560 -- Page 3 / 4



References:

[1] Huang Y W, Nie Y X, Wan Y Y, et al. Exogenous glucose regulates activities of antioxidant enzyme, soluble acid invertase and neutral invertase and alleviates dehydration stress of cucumberseedlings[J]. Scientia horticulturae, 2013, 162: 20-30.

Related Products:

BC0570/BC0575	Neutral Invertase (NI) Activity Assay Kit
BC0580/BC0585	Sucrose Synthetase (SS) Activity Assay Kit
BC0600/BC0605	Sucrose Phosphoric Acid Synthetase (SPS) Activity Assay Kit
BC2460/BC2465	Plant Sucrose Content Assay Kit

For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.