

Plant Nitrate Nitrogen Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Catalog Number: BC1500

Size:50T/24S

Components:

Reagent I: powder×2 bottle, storage at 2-8°C protected from light. Add 2 mL concentrated sulfuric acid to each bottle according to dosage before use.

Reagent II: liquid 100 mL×1 bottle, storage at 2-8°C.

Standard: powder×1 bottle, storage at 2-8°C, 10 mg KNO₃. Dissolve thoroughly with 0.935 mL distilled water before use to make 1400 µg/mL NO₃-N standard solution.

Product Description:

Nitrate is one of the nitrogen - containing substances absorbed by plants. Nitrate is reduced in roots, branches or leaves, depending on plant type and environmental conditions. Detecting nitrate nitrogen content in plants is significant to understand the nitrogen metabolism mechanism.

NO₃⁻ can react with salicylic acid to form nitrosalicylic acid under the condition of concentrated acid, which shows yellow under the condition of pH>12. Within a certain range, the color depth is proportional to the content.

Reagents and Equipments Required but Not Provided:

Spectrophotometer, water bath, centrifuge, transferpettor, 1 mL glass cuvette, mortar/homogenizer, concentrated sulfuric acid (AR≥95%), ice and distilled water.

Sample preparation:

Add 1 mL of distilled water into 0.1 g of tissue, fully grind at RT and put it in 90°C water bath for 30 min, shaking during the bath. Or put in 90°C shaker, centrifuge at 12000 g, 25°C for 15 min after cooling. Take the supernatant on ice for test.

Procedure:

- 1. Preheat spectrophotometer for 30 min, adjust the wavelength to 410 nm, set the counter to zero with distilled water.
- 2. Dilute 1400 μg/mL NO₃-N standard solution with distilled water to 28 μg/mL for use.
- 3. Add the following reagents:

Reagent (µL)	Blank tube A2	Standard tube A1	Test tube A3	Controlt tube A4
Sample	00	C SCIEIN	40	40
Standard		40	. 0	

Distilled water	40			60		
Reagent I	60	60	60	(6)		
Mix thoroughly, stand at 25°C for 30 min.						
Reagent II	1400	1400	1400	1400		

Mix thoroughly, shaking until the sediment dissolved thoroughly, take 1 mL from 1 mL glass cuvette, detect absorbance at 410 nm, $\Delta A(\text{standard}) = \Delta A(S) = A1 - A2$, $\Delta A(\text{test}) = \Delta A(T) = A3 - A4$.

Calculation:

1. Sample weight:

NO₃-N (µg/g weight)= $\Delta A(T) \div (\Delta A(S) \div C) \times Ve \div W = 28 \times \Delta A(T) \div \Delta A(S) \div W$

2. Protein concentration:

NO₃-N (µg/mg prot)= Δ A(T) \div (Δ A(S) \div C)×Ve \div (Cpr×Ve)=28× Δ A(T) \div Δ A(S) \div Cpr

C: Standard concentration, 28 μg/mL Cpr: Sample concentration (mg/mL);

W: Sample weight (g);

Ve: Extraction volume, 1 mL;

Note:

- 1. Use Reagent I as soon as possible, storage at 4°C for one week;
- 2. Both Reagent I and Reagent II are highly corrosive, and protective measures must be taken during operation.
- 3. If $\Delta A(T) > 1$, dilute the sample before the determination.

Technical Specifications:

Minimum Detection Limit: 0.7534 ug/mL

Linear Range: 0.875-84 ug/mL

References:

[1] Fuyuan Zhu, Moxian Chen, Wailung Chan, et al. SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses. Journal of Proteomics. September 2018;(IF3.537)

Related products:

BC0080/BC0085 Nitrate Reductase(NR) Activity Assay Kit

BC1450/BC1455 Glutaminase(GLS) Activity Assay Kit

BC1460/BC1465 Glutamic Acid Dehydrogenase(GDH) Activity Assay Kit

Experimental example:

1. Take 0.1g apple to 1ml distilled water, operate as the procedure after taking the supernatant, test

BC1500 -- Page 2 / 3

- $\Delta A(\text{test}) = \Delta A(T) = A3 A4 = 0.560 0.002 = 0.558, \Delta A(\text{standard}) = \Delta A(S) = A1 A2 = 0.560 0.002 = 0.558, \Delta A(\text{standard}) = 0.560 0.002 = 0.560 + 0.002 = 0$ and calculate 0.01=0.553, calculate content by sample weight: NO3-N (µg/g weight)= 0.563- $28 \times \Delta A \div \Delta A(S) \div W = 28 \times 0.558 \div 0.553 \div 0.1 = 282.5 \mu g/g$ weight.
- 2. Take 0.1g leaf to 1ml distilled water, operate as the procedure after taking the supernatant, test calculate $\Delta A(\text{test}) = \Delta A(T) = A3 - A4 = 0.907 - 0.645 = 0.262, \Delta A(\text{standard}) = \Delta A(S) = A1 - A2 = 0.907 - 0.645 = 0.262, \Delta A(\text{standard}) = 0.907 - 0.645 = 0.262, \Delta A(\text{standard}) = 0.907 - 0.645 = 0.907 -$ 0.563- 0.01=0.553, calculate content by sample weight: NO3-N (µg/g weight)= $28 \times \Delta A \div \Delta A(S) \div W = 28 \times 0.262 \div 0.553 \div 0.1 = 132.7 \mu g/g$ weight.