

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

Phosphoenolpyruvate carboxylase (PEPC)Activity Assay Kit

Note: It is necessary to predict 2-3 large difference samples before the formal determination.

Operation Equipment: Spectrophotometer

Cat No: BC2190

Size: 50T/48S

Components:

Extract solution: Liquid 60 mL×1, store at 2-8°C;

Reagent I: Liquid 30 mL×1, store at 2-8°C;

Reagent II: Liquid 5 mL×1, store at 2-8°C.

Reagent III: Liquid 5 mL×1, store at 2-8°C.

Reagent IV: Powder $\times 1$, store at -20°C. Add 4.36 mL of distilled water before use; Mix thoroughly. It can be stored at -20°C after sub packaging. Avoid repeated freezing and thawing;

Reagent V: Powder $\times 1$, store at -20°C. Add 4.67 mL of distilled water before use; Mix thoroughly. It can be stored at -20°C after sub packaging. Avoid repeated freezing and thawing;

Reagent VI original solution: Liquid 25 µL×1, store at 2-8°C;

Reagent VI diluent: Liquid 10 mL×1, store at 2-8°C;

Reagent VII: Powder $\times 1$, store at -20°C. Add 5.26 mL of double distilled water before use; Mix thoroughly. It can be stored at -20°C after sub packaging. Avoid repeated freezing and thawing;

Reagent VI: Dilute the original solution of reagent VI: diluent of reagent VI in the proportion of 5 μ L: 1095 μ L (1.1mL, about 12T). Match the solution as much as you use.

Working solution: According to the volume ratio of Reagent II, Reagent III, Reagent IV, Reagent V, Reagent VII = 810μ L: 810μ L: 810μ L: 1.08mL: 1.08mL (total 5.4 mL, 12T) to mix thoroughly. Prepare when the solution will be used.

Product Description:

Phosphoenolpyruvate carboxylase (EC 4.1.1.31) is widely found in plants and microorganisms. It catalyzes the irreversible reaction of phosphoenolpyruvate and carbon dioxide to oxaloacetic acid. It is also a key enzyme for C4 plants and cam plants to fix CO_2 . It plays an important role in regulating the operation of tricarboxylic acid cycle.

PEPC can catalyze phosphoenolpyruvate and carbon dioxide to form oxaloacetate and HPO₄²⁻. Malate dehydrogenase can catalyze oxaloacetate and NADH to produce malate and NAD⁺. The rate of NADH reduction was measured at 340 nm and PEPC activity was calculated.

Required but Not Provided:

Ultraviolet spectrophotometer, desk centrifuge, water-bath, transferpettor, 1 mL quartz cuvette, pipette, mortar/homogenizer, ice and distilled water.

Protocol

I. Preparation:

1. Tissue: according to the tissue weight (g): the Extract solution volume (mL) is 1:5-10. (It is recommended that add 1 mL of Extract solution to 0.1 g tissue). Homogenate in ice bath, then centrifuge at 8000 g for 20 minutes at 4°C. Take the supernatant for test.

2. Cells: according to the number of the cells (10^4) : the volume of the Extract solution (mL) is 500~1000:1. It is suggested that add 1 mL of Extract solution to 500 million of cells. Breaking cells by ultrasonic wave in ice bath (power 300W, ultrasonic 3s, interval 7s, total time 3 min). Centrifuge at 8000 g 4°C for 20 minutes. Take the supernatant on ice for test.

II. Determination procedure:

1. Preheat ultraviolet spectrophotometer for 30 minutes, adjust wavelength to 340 nm, set the counter to zero with distilled water.

2. According to the sample number, take part of the reagent 1 and the working solution placed at $30 \degree$ C for 10 min.

3. Operation table:

Reagent (µL)	Test tube (A _T)	Blank tube (A _B)
Reagent I	450	450
Working solution	450	450
Sample	100	- Clearer -
Distilled water		100

The above reagents are added into the 1 mL quartz cuvette in sequence. Mix thoroughly. Measure the absorbance A1 at 340 nm for 10s. Quickly placed in a 30°C water bath or incubator for 5 min (If the microplate reader has a temperature control function to adjust the temperature to 30°C). Take it out and dry it quickly. Measurement of absorbance A2 at 310s. $\Delta A_B = A1_B - A2_B$. $\Delta A_T = A1_T - A2_T$. $\Delta A = \Delta A_T - \Delta A_B$. Blank tube only need to test once or twice.

III. PEPC Calculation:

- 1. Tissue
- 1) Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzymes catalyzes the generation of 1 nmol of NADH in the reaction system per minute every mg protein.

PEPC (U/mg prot) = $\Delta A \div (\epsilon \times d) \times V_{RT} \div (Cpr \times V_S) \div T \times 10^9 = 321 \times \Delta A \div Cpr$

2) Sample weight:

Unit definition: One unit of enzyme activity is defined as the amount of enzymes catalyzes the generation of 1 nmol of NADH in the reaction system per minute every g sample.

PEPC (U/g weight) = $\Delta A \div (\epsilon \times d) \times V_{RT} \div (W \div V_{ST} \times V_S) \div T \times 10^9 = 321 \times \Delta A \div W$

2. Cells or germ

Unit definition: One unit of enzyme activity is defined as the amount of enzymes catalyzes the generation of 1 nmol of NADH in the reaction system per minute every 10^4 cells or germ. PERC ($U/(10^4 \text{ cell}) = 4.4 \pm (\text{cerd}) \times V_{-} \pm (V_{-} \pm V_{-}) \times \text{cells}(\text{million}) \pm 7 \times 10^9 = 221 \times 4.4 \pm \text{cells}(\text{million})$

ε: NADH molar extinction coefficient, 6.22×10^3 L/mol/cm; d: Light path of cuvette, 1 cm; V_{RT}: Total reaction volume, 0.001 L; V_S: Sample volume, 0.1 mL; Cpr: Protein concentration, mg/mL; W: Sample weight, g; V_{ST}: Extract solution volume of cells, 1 mL; T: Reaction time, 5 min; 10⁹: Unit conversion factor, 1 mol=10⁹ nmol.

Note:

1. In order to ensure the accuracy of the experimental results, it is necessary to take 1-2 samples for pre-experiment. When ΔA is greater than 0.6, it is recommended to dilute the crude enzyme solution with the extraction solution before measuring. When ΔA is less than 0.01, the reaction time (10 min or 15 min) can be extended to measure.

2. The blank tube is a detection tube for detecting the quality of each reagent component. Under normal circumstances, the change does not exceed 0.01.

Experimental example:

1. Take 0.1g geranium and add 1 mL of Extract solution for homogenization. After taking the supernatant, operate according to the determination steps. The results show that $\Delta A_T = A1_T - A2_T = 0.891 - 0.851 = 0.04$, $\Delta A_B = A1_B - A2_B = 0.777 - 0.775 = 0.002$, $\Delta A = \Delta A_T - \Delta A_B = 0.04 - 0.002 = 0.038$.

The activity of PEPC (U/g mass) = $321 \times \Delta A \div W = 321 \times 0.038 \div 0.1 = 121.98$ U/g mass.

2. Take 0.1g of aloe and add 1 mL of Extract solution for homogenization. After taking the supernatant, operate according to the determination steps. The results are as follows: $\Delta A_T = A1_T - A2_T = 0.748-0.721 = 0.027$, $\Delta A_B = A1_B - A2_B = 0.777-0.775=0.002$, $\Delta A = \Delta A_T - \Delta A_B = 0.027-0.002=0.025$

PEPC activity (U/g mass) = $321 \times \Delta A \div W = 321 \times 0.025 \div 0.1 = 80.25$ U/g mass.

References:

[1] Zhang Y H, Wang Z M, Huang Q, et al. Phosphoenolpyruvate carboxylase activity in ear organs is related to protein concentration in grains of winter wheat[J]. Journal of cereal science, 2008, 47(2): 386-391.

Related Products:

BC0740/BC0745	Hexokinase (HK) Activity Assay Kit
BC0540/BC0545	Pyruvate Kinase (PK) Activity Assay Kit
BC0530/BC0535	Phosphofructokinase (PFK) Activity Assay Kit