

Fructose-1, 6-diphosphate (FDP) Activity Assay Kit

Note: The reagents have been changed, so please be aware of and follow this instruction strictly.

Operation Equipment: Spectrophotometer

Cat No: BC2240 Size:50T/24S

Components:

Extract solution I: Liquid 30 mL×1. Store at 2-8°C. Extract solution II: Liquid 5 mL×1. Store at 2-8°C.

Reagent I: Liquid 20 mL×1. Store at 2-8°C.

Reagent II: Liquid×2. Store at 2-8°C. Dissolve with 0.5 mL of distilled water before use. Unused reagents can be stored at 20°C for up to 4 weeks, avoiding repeated freezing and thawing..

Reagent III: Liquid 15 mL×1. Store at 2-8°C. **Reagent IV:** Liquid 40 mL×1. Store at 2-8°C.

Standard: Powder×1. Store at 2-8°C. Dissolve with 1.176 mL of distilled water before use to form 50 µmol/mL FDP standard solution. The standard can be stored at 2-8°C for 4 weeks.

Product Description:

Fructose-1,6-diphosphate (FDP) is an important intermediate product in the glycolysis process. It can regulate a variety of enzymes, improve cell energy metabolism, increase energy utilization, anti-arrhythmia and anti-tissue peroxidation. FDP is widely used in clinical medicine.

Aldolase catalyzes the cleavage of fructose 1,6-diphosphate. The product reacts with 2,4-dinitrophenylhydrazine in acid medium to form 2,4-dinitrophenylhydrazone, which is dark red in alkaline solution and has a characteristic absorption peak at 540 nm.

Reagents and Equipment Required but Not Provided:

spectrophotometer, desk centrifuge, adjustable transferpettor, water bath /incubator, 1 mL glass cuvette, mortar / homogenizer, Ultrasonic crusher, ice and distilled water.

Procedure:

I. Sample preparation:

1) Tissue

According to the tissue weight (g): the volume of the extract (mL) is $1:5 \sim 10$. Suggest adding 1 mL of Extract solution I to 0.1 g of tissue, fully homogenize on ice bath. Centrifuge at $12000 \times g$ for 10 minutes at 4° C. Add 0.15mL Extract solution II slowly to 0.8 mL supernatant. **Blend slowly until no bubbles**, centrifuge at $12000 \times g$ for 10 minutes at 4° C. Then take supernatant for test.

2) Bacteria or cells

According to the Bacteria or cells (10⁴): the volume of the extract (mL) is 500~1000:1. Suggest add 1mL

of Extract solution to 5 million of bacteria or cells. Use ultrasonication to splitting bacteria and cells

(placed on ice, ultrasonic power 300W, working time 3 seconds, interval 7 seconds, total time for 3 min). Centrifuge at 12000 ×g for 10 minutes at 4°C. Add 0.15mL Extract solution II slowly to 0.8 mL supernatant. **Blend slowly until no bubbles**, centrifuge at 12000 ×g for 10 minutes at 4°C. Then take supernatant for test.

3) Liquid:

Add 1mL Extract solution I to 100μ L liquid sample, centrifuge at $12000 \times g$ for 10 minutes at 4°C. Add 0.15mL Extract solution II slowly to 0.8 mL supernatant. **Blend slowly until no bubbles**, centrifuge at $12000 \times g$ for 10 minutes at 4°C. Then take supernatant for test.

Determination procedure:

- 1. Preheat spectrophotometer for 30 minutes, adjust the wavelength to 540 nm, set zero with distilled water.
- 2. $50 \mu mol/ml$ fructose-1,6-diphosphate standard solution is diluted to 1.5625, 0.78125, 0.39, 0.2 and 0.1 $\mu mol/ml$ standard solution with distilled water.

3. Sampling table:

Reagent name (μL)	Control tube (A _C)	Test tube (A _T)	Blank tube	Standard tube
			(A_B)	(As)
Sample	100	100	Jal Hace	-
Distilled water	-	-	100	- 👈
Standard solution		5	-	100
Reagent I	220	200	220	200
Reagent II	- 0	20	-	20
9	Mix well, rea	act accurately at 37	7°C for 2 h	
Reagent III	200	200	200	200
	Mix well, react	t accurately at 37°C	C for 20 min	
Reagent IV	500	500	500	500
0	Mix well, react	t accurately at 37°C	C for 10 min	9/0

The absorbance value at 540 nm is measured in 1 ml glass cuvette and recorded as A_C , A_T , A_B , A_S , respectively. Calculate $\Delta A = A_T - A_C$, $\Delta A_S = A_S - A_B$. The blank tube only needs to be tested 1-2 times.

II. Calculation:

1. According to concentration of standard solution and ΔA_S to create the standard curve, take standard solution as X-axis, ΔA_S as Y-axis. Take ΔA into the equation to obtain x (μ mol/ml).

2. Calculation:

(1) sample weight

FDP (
$$\mu$$
g /g weight) = $\mathbf{x} \times (\mathbf{V}_{su} + \mathbf{V}_{exII}) \times \mathbf{M} \div (\mathbf{W} \times \mathbf{V}_{su} \div \mathbf{V}_{exI}) = 403.75 \mathbf{x} \div \mathbf{W}$

(2) The number of bacteria or cells

FDP (
$$\mu$$
g /10⁴ cell) = $\mathbf{x} \times (\mathbf{V}_{\text{su}} + \mathbf{V}_{\text{exII}}) \times \mathbf{M} \div (\mathbf{N} \times \mathbf{V}_{\text{su}} \div \mathbf{V}_{\text{exI}}) = 403.75 \mathbf{x} \div \mathbf{N}$

(3) Liquid:

 $FDP\left(\mu g/mL\right) = x \times (V_{su} + V_{exII}) \times M \\ \div (V_L \times V_{su} \\ \div (V_{exI} + V_L)) = 4441.25x$

V_{su}: Supernatant volume of extraction, 0.8mL

V_{exII}: Extract solution II volume, 0.16mL

M: Molecular weight of fructose-1,6-diphosphate,340

V_{exI}: Extract solution I volume, 1mL

W: sample weight, g

N:Cell amount, 10 thousand cells as unit

V_L: liquid sample volume, 0.1mL.

Note:

1. If $\Delta A > 0.5$, please dilute the sample with water to appropriate concentration, multiply dilute times in the formula.

Related Products:

BC2270/BC2275 Fructose-bisphosphate aldolase(FBA) Activity Assay Kit

BC2250/BC2255 Phosphoglycerate Kinase(PGK) Activity Assay Kit