

Cellulase (CL) Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer/ microplate reader

Catalog Number: BC2545

Size:100T/48S

Components:

Extract reagent: 60mL×1, storage at 2-8°C.

Reagent II: 5mL×1, storage at 2-8°C. **Reagent III:** 20mL×1, storage at 2-8°C. **Reagent III:** 5mL×1, storage at 2-8°C.

Standard: powder $\times 1$, storage at 2-8°C. Containing 10 mg of anhydrous glucose (loss on drying < 0.2%). Add 1 mL of distilled water to dissolve it for standby before use. It can be stored for two week at 4°C, or it can be stored for a longer time with saturated benzoic acid solution.

Product Description:

Cellulase (EC 3.2.1.4) exists in bacteria, fungi and animals, which can catalyze cellulose degradation. It is a type of enzyme preparation that can be widely used in the fields of medicine, food, cotton spinning, environmental protection and renewable resource utilization.

The 3.5-dinitrosalicylic acid method is used to determine the reducing sugar content of cellulose catalyzed by CL.

Reagents and Equipment Required but Not Provided:

Spectrophotometer/ microplate reader, water bath, transferpettor, mortar/homogenizer, centrifuge, micro glass cuvette/ 96 well flat-bottom plate, ice and distilled water.

Sample preparation:

- 1. Plant and animal tissues: Weigh about 0.1 g of sample, add 1 mL of Extract reagent and fully grind. Centrifugate at 8000g and 4°C for 10 min, take the supernatant and place on ice for testing.
- 2. Bacteria or cells: Collect the bacteria or cells into a centrifuge tube, discard the supernatant after centrifugation; add 1 mL of Extract reagent for every 5 million bacteria or cells, and break the bacteria or cells with an ultrasonic ice bath (power 200w, ultrasonic 3 seconds, interval 10 seconds, repeat 30 times); Centrifugate at 8000g and 4°C for 10 min, take the supernatant and place on ice for testing.

Procedure:

- 1. Preheat spectrophotometer/ microplate reader for 30min, adjust the wavelength to 540 nm and spectrophotometer set the counter to zero with distilled water.
- 2. Standard preparation: Dilute the standard with distilled water to 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0 mg/mL.

3. Add reagent to a 1.5mL EP tube:

Reagent name $_{\mathbb{Q}}(\mu L)$	Control tube (Ac)	Test tube (At)	Standard tube (As)
Reagent I	50	50	- / 3/10/cm
Reagent II	200	200	SOLE SOL
Distilled water	50	50	(%) -
Sample	- Olshing	50	-
Boiled sample	50	.0	-
Mix well, and react accurate	ely in water bath at 40°	C for 30min. after takir	ng out, put it in boiling
water and boil for 15 min im	mediately to get the sacc	charification solution.	
Saccharification solution	15	15	- 1010
Standard solution	-	-	15
Reagent III	35	35	35
Mix we	ell, boil for 15min in a bo	oiling water bath and co	ol.

Mix well, set the counter to zero with distilled water, and measure the absorbance A at 540 nm, and calculate $\Delta A = A_T - A_C$. $\Delta As = As - A(0 \text{ mg/mL})$. Standard curves only need to be done 1-2 times.

250

250

250

Calculation:

1. Standard curve

Distilled water

A standard curve was created from the absorbance $(x, \Delta As)$ and concentration (y, mg/mL) of the standard tube, and ΔAt $(x, \Delta At)$ was brought into the standard curve to calculate the amount of product y (mg/mL) generated by the sample.

2. Calculation

(1)Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalyzes the production of 1µg glucose per minute in the reaction system every milligram tissue protein

$$CL (U/mg prot) = 1000 \times y \times Vrv \div (Vs \times Cpr) \div T = 233y \div Cpr$$

(2)Sample weight:

Unit definition: One unit of enzyme activity is defined as that one gram tissue catalyzes the production of 1µg glucose per min in the reaction system.

$$CL(U/g) = 1000 \times y \times Vrv \div (V_s \times W \div Ve) \div T = 233y \div W$$

(3)Cells or bacteria:

Unit definition: One unit of enzyme activity is defined as that 10^4 cells or bacteria catalyzes the production of $1\mu g$ glucose in the reaction system per min.

$$CL (U/10^4 \text{ cell}) = 1000 \times y \times Vrv \div (500 \times Vs \div Ve) \div T = 0.467 \times y$$

 $1000: 1 \text{mg/mL} = 1000 \mu \text{g/mL}$

Vrv: Total volume of reaction system, 0.35mL.

Vs: sample volume added, 0.05mL;

BC2545 - Page 2/3

Ve: volume used in the extraction solution, 1mL;

Cpr: sample protein concentration, mg/mL;

W: Fresh weight of sample, g;

T: React time, 30min.

500: the number of cells or bacteria, 5 million

Recent Product Citations:

Guo Q, Du G, Qi H, et al. A nematicidal tannin from Punica granatum L. rind and its physiological effect on pine wood nematode (Bursaphelenchus xylophilus)[J]. Pesticide biochemistry and physiology, 2017, 135: 64-68.

References:

Faria M L, Kolling D, Camassola M, et al. Comparison of Pennicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates[J]. Biores. Technol, 2008, 99: 1417-1424.

Related Products:

BC0340/BC0345 Glucogen Content Assay Kit

BC2450/BC2455 Plant Tissue Fructose Content Assay Kit

BC2510/BC2515 Trehalase Activity Assay Kit