

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

Serum Total Iron Binding Capacity (TIBC) Assay Kit

Note: It is necessary to predict 2-3 large difference samples before the formal determination.

Operation Equipment: Spectrophotometer

Cat No: BC2860

Size: 50T/48S

Components:

Reagent I: Liquid 50 mL×1, store at 2-8°C.

Reagent II: Liquid 5 mL×1, store at 2-8°C.

Reagent III: Liquid 1 mL×1, store at 2-8°C.

Reagent IVA: Liquid 2.5 mL×1, store at 2-8°C.

Reagent IVB: Liquid 2.5 mL×1, store at 2-8°C. Mix reagents accordance the ratio A:B=1:1 before use. Reagents are only stored on the same day.

Reagent V: Liquid 15 mL×1, store at 2-8°C.

Standard: Powder×1, store at 2-8°C. Add 0.9 mL of distilled water before use to prepare as 40 µmol/mL FeSO₄ standard solution, the unused reagent can be stored at 2-8°C for 8 weeks.

Description:

Total iron-binding capacity (TIBC) refers to the ability of serum transferrin to bind iron, and its content is closely related to the diseases such as iron deficiency anemia and acute hepatitis.

 Fe^{2+} reacts with ferrozine to form a fuchsia compound which has an absorption peak at 562nm. In alkaline condition, serum transferrin can bind with Fe^{3+} , and the remaining unbound Fe^{3+} can be reduced to Fe^{2+} . So the absorbance A1 is positively correlated with Fe^{3+} . After acidification, the transferrin-bound Fe^{3+} is released and further reduced to Fe^{2+} . The absorbance A2 has a positive correlation with Fe^{3+} , A2 minus A1 was proportional to TIBC.

Required but not provided:

Spectrophotometer, water bath/constant temperature foster box, centrifuge, 1mL glass cuvette, distilled water.

Procedure:

1. Dilution of standard solution: take 10μ L40 μ mol/ml FeSO₄ standard solution, add 1590 μ L distilled water, fully mixed, this is the concentration of 0.25 μ mol/ml standard solution. (In the experiment, each tube needs 100 μ L. In order to reduce the experimental error, a large volume is prepared.)

- 2. Preheat spectrophotometer for 30min, adjust wavelength to 562 nm, set zero with distilled water.
- 3. Preheat reagent I at 37 °C for 10min.
- 4. Add reagents in centrifuge tube according to the following table.

Reagent (µL)	Test tube	Blank tube	Standard tube
Serum	100	-	-

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

Standard solution	-	-	100
Distilled water	-	100	- 0
Reagent I	700	700	700
Reagent II	100	_	- 0/3 cienc
Reagent III	0	100	100
(*C_) *	Mix thoroughly, incul	bate at 37°C for 10min.	
Reagent IV	100	100	100
Mix thoroughly, incuba calculate $\Delta A1_T = A1_T - A1_B$, 2			T A_{1B} A_{1S} at 562nm and the reaction solution back to
the corresponding tube and a	add reagent V.	Synthese	-0
Reagent V	300	300	300

Mix thoroughly, incubate at 37°C for 5min, detect the absorbance of A_{2T} , A_{2B} , A_{2S} at 562nm and calculate $\Delta A_{2T} = A_{2T} - A_{2B}$, $\Delta A_{2S} = A_{2S} - A_{2B}$. Standard tube and blank tube only need to be measured 1-2 times.

Calculation

Definition: Per liter of serum combining the µmol amount of Fe³⁺ at 37 °C.

 $TIBC(\mu mol/L) = C_S \times \Delta A2_T \div \Delta A2_S - C_S \times \Delta A1_T \div \Delta A1_S$

$$=250\times(\Delta A2_{T} \div \Delta A2_{S} - \Delta A1_{T} \div \Delta A1_{S})$$

 C_s : The concentration of standard, 0.25µmol/mL=250µmol/L.

Note:

- 1. If $A1_T < 0.1$, test after diluting, multiply the dilution multiple in equation.
- 2. Reagent II and Reagent IV is poisonous, please take precautions when operating.

Experimental Example:

1. Take 100 µl of camel serum diluted four times with distilled water and operate according to the determination steps. Calculate $\Delta A1_T = A1_T - A1_B = 0.356$, $\Delta A1_S = A1_S - A1_B = 0.669$, $\Delta A2_T = A2_T - A2_B = 0.819$, $\Delta A2_S = A2_S - A2_B = 0.519$.

TIBC (μ mol/L) = 250× (Δ A2_T÷ Δ A2_S- Δ A1_T÷ Δ A1_S) ×4 = 1045.897 μ mol/L.

2. Take 100 μ L of goose serum diluted 8 times with distilled water and operate according to the determination steps. Calculate $\Delta A1_T = A1_T - A1_B = 0.588$, $\Delta A1_S = A1_S - A1_B = 0.669$, $\Delta A2_T = A2_T - A2_B = 0.797$, $\Delta A2_S = A2_S - A2_B = 0.519$.

TIBC (μ mol/L) = 250 × (Δ A2_T \div Δ A2_S - Δ A1_T \div Δ A1_S) ×8 = 1313.443 μ mol/L.

Related Products:

BC2790/BC2795	Blood Magnesium Content Assay Kit
BC1650/BC1655	Blood Phosphate Content Assay Kit

BC2800/BC2805Blood Sodium Content Assay KitBC1730/BC1735Serum Ferri Ion Content Assay Kit

Technical Specifications:

Minimum detection limit: the detection limit of the first measurement is 0.0002 μ mol/mL; the detection limit of the second measurement is 0.0017 μ mol/mL.

Linear range: the linear range of the first measurement is $0.00195-0.5 \mu mol/mL$; the linear range of the second measurement is $0.00195-0.5 \mu mol/mL$.

 Tel: 86-010-50973105
 https://www.solarbio.net
 E-mail: info@solarbio.com

 For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.