

Soil nitrite reductase (S-NiR) Assay Kit

Note: It is necessary to predict 2-3 large difference samples before the formal determination.

Operation Equipment: Spectrophotometer/ Microplate reader

Catalog Number: BC2995

Size:100T/48S

Components:

Reagent I: Powder×1, storage at 4°C. Dissolve with 1mL of distilled water before use. The reagent can be saved for 2 weeks at 4°C. Dilute 100 times with distilled water before use, prepared when the solution will be used.

Reagent II: Powder×1, storage at 4°C. Dissolve with 15mL of distilled water before use. The reagent can be saved for 2weeks at 4°C.

Reagent III: Powder×1, storage at 4°C. Dissolve with 15mL of distilled water before use. This solution is a saturated solution, just use the supernatant. The reagent can be saved for 2weeks at 4°C.

Reagent IV: 15 mL×1, storage at RT and protected from light.

Reagent V: 15 mL×1, storage at RT and protected from light.

Standard: 1 mL×1, storage at 4°C. 10 μmol/mL of NaNO₂ standard solution.

Product Description:

Soil nitrite reductase (S-NiR) is one of the key enzymes in denitrification. It is a reductase produced by soil denitrifying bacteria. It can reduce NO₂⁻ to NO. The activity reflects the conversion efficiency of nitrogen in the process of biodegradation, and provides a certain basis for the study of nitrogen conversion.

Nitrite reductase can reduce NO₂⁻ to NO, and reduce the NO₂⁻ in the sample to participate in the diazotization reaction to produce a purple-red compound, that is, the change in absorbance at 540nm can reflect the activity of nitrite reductase in soil.

Reagents and Equipment Required but Not Provided:

Spectrophotometer/ Microplate reader, low temperature desk centrifuge, water-bath, adjustable transferpettor, mortar, micro glass cuvette/ 96-well flat-bottom plate, sieve (30-50 mesh, or smaller), ice and distilled water.

Procedure:

I. Sample preparation

Fresh soil samples are naturally air-dried or oven dried at 37°C and sieved through 30-50 mesh.

II. Determination

1. Preheat spectrophotometer/microplate reader for 30 min, adjust the wavelength to 540 nm and set spectrophotometer counter to zero with distilled water.

- 2. Dilute the standard solution with distilled water to prepare $0.8 \cdot 0.6 \cdot 0.4 \cdot 0.2 \cdot 0.1 \cdot 0.05 \, \mu \text{mol/mL}$ standard solution.
- 3. Add reagent to a 1.5 mL EP tube:

- 0						A1 1 20
Reagent	Non-matrix	Blank tube1	Control	Test tube	Standard	Blank tube
	tube (An)	(Ab1)	tube (Ac)	(At)	tube (As)	(Ab)
sample (g)	-	-10/0	0.05	0.05		-
Distilled water	-	100	100	-	-	-
(µL)	E.	J. Life		0,0		
Reagent I (µL)	100	· -	-	100	-	ı
Reagent II (µL)	100	100	100	100	-	© C
After mixing, react at 25°C for 3 h.						" ALD TO ES
Reagent III (µL)	100	100	100	100	- 0	O Section
Fully shake for 30s, centrifuge at 10000 rpm for 10 min at 4°C.					<u>-</u> 90	-
Superatant (µL)	100	100	100	100		-
Standard (µL)	-	20,500	-	- @	100	-
Reagent IV (µL)	100	100	100	100	100	100
Reagent V (µL)	100	100	100	100	100	100
Distilled water				2/162		100
(µL)	ks.		5			18LPICES
7.05.787					-	1 2 2

Mix well and react at room temperature for 15min. Take 200 μ L into a micro glass cuvette/96 well plate and measure the absorbance value at the wavelength of 540nm, and record them as An, Ab1, Ac, At, As and Ab, and calculate $\Delta A = (An-Ab1)-(At-Ac)$, $\Delta As = As-Ab$. Non-matrix tube (An), Blank tube (Ab1), Blank tube (Ab1) only need to be done 1-2 times.

III. Calculation:

- 1. According to concentration of standard solution and absorbance to create the standard curve, take standard solution as X-axis, ΔAs as Y-axis. Take ΔA into the equation to obtain x ($\mu mol/mL$)
- 2. Fermentation broth:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the reduction of 1μ mol NO_2 per day every gram soil in the reaction system.

S-NiR (U/g) =
$$x \times Vr \div T \div W = 2.4 \times x \div W$$
.

T: reaction time, 3h=1/8 d;

V1: Enzymatic reaction volume, 0.3 mL;

W: soil weight, g;