

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

Soil β-Xylosidase (S-β-XYS) Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Catalog Number: BC4010

Size: 50T/24S

Components:

Reagent I: Methylbenzene 3 mL×1, Storage at 4°C (self-provided reagent).

Reagent II: Liquid 30 mL×1. Storage at 4°C.

Reagent III: Powder×2. Storage at -20°C. Add 10 mL of distilled water to each bottle before use. The left reagent can be stored at -20°C for four weeks.

Reagent IV: Liquid 60 mL×1. Storage at 4°C.

Standard: Liquid 1 mL×1. Storage at 4°C. 5 mmol/L p-nitrophenol solution.

Product Description:

Soil β -xylosidase (S- β -XYS) exists in organisms such as plants, bacteria and fungi, which is a key enzyme that catalyzes the degradation of xylan hemicellulose. The product xylose can be used as a carbon source in microbial fermentation. In addition, β -XYS can also be used as a biological bleaching agent in the paper industry, which is more environment-friendly than traditional bleaching methods and has a widespread application value.

S- β -XYS can catalyze the p-nitrophenyl beta-xylopyranoside to p-nitrophenol. The product has characteristic of absorption at 400 nm. In this kit, the S- β -XYS activity is quantified by measuring the increase in the color development at 400 nm.

Reagents and Equipment Required but Not Provided:

Spectrophotometer, water-bath, desk centrifuge, transferpettor, 1 mL glass cuvette, analytical balance, mortar, 30-50 mesh sieve, **methylbenzene**, ice and distilled water.

Procedure:

I. Preparation of samples

Fresh soil samples are naturally air-dried or oven-dried at 37°C, pass through a 30-50 mesh sieve.

II. Determination procedure:

1. Preheat Spectrophotometer for 30 minutes, adjust the wavelength to 400 nm, set zero with distilled water.

- Dilution of standard solution: Take 20µL of 5 mmol/L p-nitrophenol solution before use, add 980µL of reagent II, mix well, and make a 100 µmol/L standard solution for use, ready to use. (In the experiment, each tube needs 500µL, in order to reduce the experiment error, so prepare a large volume.)
- 3. Add reagents in 1 mL glass cuvette as the following:

BC4010 -- Page 1 / 3

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

Reagent	Test tube (T)	Contrast Tube (C)	Standard tube (S)	Blank tube (B)		
Air-dried soil (g)	0.1	0.1		- (6)		
Reagent I (µL)	20	20		- 10100		
The soil samples are all wetted by oscillating mixing, and store at 25°C for 15 minutes.						
Reagent II (µL)	500	500	-	S LIFE		
Reagent III (µL)	400		_	5		
Mix thoroughly and incubate the reaction for 1 hour at 50°C water bath, then take the reaction solution						
in a boiling water bath for 5 minutes immediately (tightly close to prevent moisture loss), flowing						
water to cool.						
Reagent III (µL)	-	400 5	LIFE ST -	0		
Mix thoroughly, centrifuge at 10000 rpm for 10 minutes at 25°C and take the supernatant						

Mix thoroughly, centrifuge at 10000 rpm for 10 minutes at 25°C and take the supernatant.					
Supernatant (µL)	500	500	-	GO Che Solt	
Standard solution (µL)	-	- 00	500	- Li	
Distilled water (µL)	161 -	NOES -	-	500	
Reagent IV (µL)	1000	1000	1000	1000	

Mix thoroughly and stand at room temperature for 2 minutes, centrifuge at $10000 \times g$ for 5 minutes. Take the supernatant and detect the absorbance of each tube at 400 nm and noted as A_T , A_C , A_S and A_B . Calculate $\Delta A_T = A_T - A_C$, $\Delta A_S = A_S - A_B$. Each test tube should be provided with one contrast tube.

III. S-NAG activity calculation:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalyzes the generation 1µmol of p-nitrophenol every gram of soil sample in the reaction system per day.

S- β -XYS (U/g soil sample) = $\Delta A_T \div (\Delta A_S \div C) \times Vrv \div W \div T = 2.21 \times \Delta A_T \div \Delta A_S \div W$

C: Concentration of standard solution, 100 µmol/L;

Vrv: Total volume in catalyze system, 9.2×10⁻⁴ L;

W: Soil sample weight, g;

T: React time, 1 hour = 1/24 day;

Experimental Examples:

1. Take two tubes of 0.1g soil, which are the measuring tube and the control tube. Follow the measuring steps and mark them as At and Ac. Calculate $\Delta At=At-Ac=0.46-0.221=0.239$, $\Delta As=As-Ab=0.568-0.002=0.566$, calculate the enzyme activity:

S- β -XYS activity (U/g soil sample)= $2.21 \times \Delta At \div \Delta As \div W = 2.21 \times 0.239 \div 0.566 \div 0.1 = 9.3312$ U/g.

2. Take two tubes of 0.1g forest soil samples, which are the measuring tube and the control tube. Follow the measuring steps and mark them as At and Ac. Calculate $\Delta At=A$ t-Ac=0.356-0.109=0.247, $\Delta As=As-Ab=0.568-0.002=0.566$, calculate enzyme activity:

S- β -XYS activity (U/g soil sample) =2.21× Δ At÷ Δ As÷W=2.21×0.247÷0.566÷0.1=9.6443 U/g.

Related Products:

BC3080/BC3085 Soil α-glucosidase(S-α-GC) Activity Assay Kit

BC4010 -- Page 2 / 3

BC0240/BC0245 Soil Saccharase(S-SC) Activity Assay Kit

For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.