

Water-Soluble Pectin (WSP) Content Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Catalog Number: BC4120 Size:50T/24S

Components:

Extract solution I: 100 mL of 80% ethanol. Take 80 mL of ethanol and add 20 mL of distilled water,

self-provided reagent.

Extract solution II: 30 mL×1, stored at 4°C.

Extract solution III: 70 mL×1, stored at 4°C.

Reagent I: 60 mL of concentrated H₂SO₄, self-prepared.

Reagent II: 3 mL×1, stored at 4°C.

Reagent III: 5 mL×1, stored at 4°C.

Standard: Powder×1, 10 mg of galacturonic acid, stored at 4°C. Before use, add 0.943 mL extract solution III to prepare a standard solution of 50 µmol/mL.

Product Description

Pectin is the main component of primary cell wall and mesosol, which softens and binds cells. The pectin are crosslinked by Ca²⁺ bridge and other ion bonds, hydrogen bonds, glycoside bonds, ester bonds and benzene ring coupling. Various pectin can be extracted by different extraction methods, such as water-soluble pectin (WSP), ion-bound pectin (ISP) and covalently bound pectin (CSP). The water-soluble pectin is hydrolyzed to galacturonic acid in acid condition, and the latter

condensed with carbazole in sulfuric acid solution to form a purplish red compound. The product has the maximum absorption peak at 530 nm

Reagents and Equipment Required but Not Provided.

Spectrophotometer, low temperature centrifuge, water bath, 1 mL glass cuvette, adjustable pipette, mortar/homogenizer, acetone, concentrated H₂SO₄, anhydrous ethanol and distilled water.

Procedure

I. Extraction of protopectin

Take about 0.1 g of sample, add 1 mL of extract solution I, rapidly homogenization at room temperature, water bath at 95°C for 20 minutes, cool to room temperature. Centrifuge at 4000 ×g for 10 minutes at 25°C, discard the supernatant. Add 1.5 mL of extract solution I and acetone to the precipitate and wash them twice alternately (vortex oscillation for 2 minutes, centrifuge at 4000×g for 10 minutes at 25°C, discard supernatant). The precipitate is the rough cell wall. Add 1 mL of extract II (starch removal) to soak for 15 hours. Centrifuge at 4000 ×g for 10 minutes at 25°C, discard supernatant solution III, and fully homogenize. Centrifuge at 8000 ×g for 10 minutes at 25°C and take the supernatant for test.

II. Measurement steps:

a. Preheat the spectrophotometer for 30 minutes, adjust the wavelength to 530 nm and adjust zero with distilled water.

b. Dilute 50 μ mol/mL standard solution to2, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125 μ mol/mL standard solution for standby.

c. Operation table:

of the second second				
Reagent name	Blank tube (B)	Standard tube (S)	Contrast tube (C)	Test tube (T)
Sample (µL)	CO10301	-	100	100
Standard (µL)	Contraction of the	100	- Vice	-
Distilled water (µL)	100	-	13 CENCE	-
Reagent I (µL)	800	800	800	800
Mix w	vell, place at 90 °C	for 10 minutes, take	e out and cool down	1910
Reagent II (µL)	-	-	100	SOL SOL
Reagent III (µL)	100	0 100	-	100
Min wall lat it stand a	+ 25°C for 20 min	unter and many t	ha ahaanhanaa walwa	at 520 mm and

Mix well, let it stand at 25°C for 30 minutes, and measure the absorbance value at 530 nm, and record it as A_B , A_S , A_C and A_T respectively. $\Delta A_S = A_S - A_B$, $\Delta A_T = A_T - A_C$.

III. Calculation of Betaine Content:

1. Drawing of standard curve:

Take ΔA_s as y-axis, standard solution concentration as x-axis, draw standard curve, get standard equation y = kx+b, bring ΔA_T into the equation, get x (mg/mL).

2. Calculation of protopectin content:

protopectin content (μ mol/g Fresh weight) =x×V_{EIII}÷W =2x÷W.

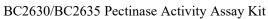
V_{EIII}: volume of extract solution III, 2 mL;

W: Fresh weight of sample, g.

Note:

1. Concentrated H_2SO_4 is highly corrosive, so special attention shall be paid during operation. After heating at 90°C, take it out, cool it and then open the cover to prevent liquid splashing and burning. 2. If ΔA is more than 0.5, the sample can be appropriately diluted with extract solution III and then determined, and multiplied by the dilution multiple in the calculation formula.

Experimental Examples:


1. Take 0.1g of poplar leaves and add 1mL of extraction solution one to sample processing. Dilute the supernatant by 5 times and follow the measurement procedure to calculate Δ At=At-Ac=0.079-0.031=0.048, Bring in the standard curve y=0.7536x+0.0022 x=0.0608, and calculate:

Water-Soluble Pectin content (μ mol/g mass) = $2x \div W \times 5 = 6.08 \mu$ mol/g mass.

Related Products:

BC1400/BC1405 Pectin Content Assay Kit

