

Water-Soluble Pectin (WSP) Content Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer/microplate reader

Catalog Number: BC4125 Size: 100T/48S

Components:

Extract solution I: 125 mL of 80% ethanol. Take 100 mL of ethanol and add 25mL of distilled water, self-provided reagent.

Extract solution II: 50 mL×1, stored at 4°C.

Extract solution III: 120 mL×1, stored at 4°C.

Reagent I: 25 mL of concentrated H₂SO₄, self-prepared.

Reagent II: 2.5 mL×1, stored at 4°C.

Reagent III: 5 mL×1, stored at 4°C.

Standard: Powder×1, 10 mg of galacturonic acid, stored at 4°C. Before use, add 0.943 mL of extract solution III to prepare a standard solution of 50 µmol/mL.

Product Description

Pectin is the main component of primary cell wall and mesosol, which softens and binds cells. The pectin are crosslinked by Ca²⁺ bridge and other ion bonds, hydrogen bonds, glycoside bonds, ester bonds and benzene ring coupling. Various pectin can be extracted by different extraction methods, such as water-soluble pectin (WSP), ion-bound pectin (ISP) and covalently bound pectin (CSP).

The water-soluble pectin is hydrolyzed to galacturonic acid in acid condition, and the latter condensed with carbazole in sulfuric acid solution to form a purplish red compound. The product has the maximum absorption peak at 530 nm.

Reagents and Equipment Required but Not Provided.

Spectrophotometer/microplate reader, desktop low temperature centrifuge, water bath, micro glass cuvette/96 well flat-bottom plate, adjustable pipette, mortar/homogenizer, acetone, concentrated H₂SO₄, anhydrous ethanol and distilled water.

Procedure

I. Extraction of protopectin:

Take about 0.1 g of sample, add 1 mL of extract solution I, rapidly homogenization at room temperature, water bath at 95°C for 20 minutes, cool to room temperature. Centrifuge at 4000 ×g for 10 minutes at 25°C, discard the supernatant. Add 1.5 mL of extract solution I and acetone to the precipitate and wash them twice alternately (vortex oscillation for 2 minutes, centrifuge at 4000×g for 10 minutes at 25°C, discard supernatant). The precipitate is the rough cell wall. Add 1 mL of extract II (starch removal) to soak for 15 hours. Centrifuge at 4000 ×g for 10 minutes at 25°C, discard supernatant solution III, and fully homogenize. Centrifuge at 8000 ×g for 10 minutes at 25°C and take the supernatant for test.

II. Measurement steps:

a. Preheat the spectrophotometer/microplate reader for 30 minutes, adjust the wavelength to 530 nm and adjust zero with distilled water.

b. Dilute 50 μ mol/mL standard solution to3 2 1 0.5 0.25 0.125 0.0625 μ mol/mL standard solution for standby.

c. Operation table:

Reagent name (μ L)	Blank tube (B)	Standard tube (S)	Contrast tube (C)	Test tube(T)
Sample	- un	-	25	25
Standard	<u> </u>	25	13 Lences	-
Distilled water	25	5		
Reagent I	200	200	200	200
Mix w	ell, place at 90 °C f	for 10 minutes, take	out and cool down.	GOLE SOLE
Reagent II	-	0 -	25	
Reagent III	25	25	_	25

Mix well, let it stand at 25°C for 30 minutes, and measure the absorbance value at 530 nm, and record it as A_B , A_S , A_C and A_T respectively. $\Delta A_S = A_S - A_B$, $\Delta A_T = A_T - A_C$.

III. Calculation of Betaine Content:

1. Drawing of standard curve:

Take ΔA_S as y-axis, standard solution concentration as x-axis, draw standard curve, get standard

equation y = kx+b, bring ΔA_T into the equation, get x (mg/mL).

2. Calculation of protopectin content:

protopectin content (μ mol/g Fresh weight) =x×V_{EIII}÷W =2x÷W.

V_{EIII}: volume of extract solution III, 2 mL;

W: Fresh weight of sample, g.

Note:

- Concentrated H₂SO₄ is highly corrosive, so special attention shall be paid during operation. After heating at 90°C, take it out, cool it and then open the cover to prevent liquid splashing and burning.
- 2. If ΔA is more than 1, the sample can be appropriately diluted with extract solution III and then determined, and multiplied by the dilution multiple in the calculation formula.

Experimental Examples:

1. Take 0.1g of poplar leaves and add 1mL of extraction solution one to sample processing. Dilute the supernatant by 5 times and follow the measurement procedure ,measure by the 96 well plate and calculate $\Delta At=At-Ac==0.087-0.054=0.033$, Bring in the standard curve y=0.431x-0.0256 x=0.136, and calculate:

Water-Soluble Pectin content (μ mol/g mass) = $2x \div W \times 5 = 13.6 \mu$ mol/g mass.

Related Products:

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

BC1400/BC1405 Pectin Content Assay Kit BC2630/BC2635 Pectinase Activity Assay Kit

 Tel: 86-010-50973105
 https://www.solarbio.net
 E-mail: info@solarbio.com

 For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.