

5'- Nucleotidase (5'-NT) Activity Assay Kit

Note: It is necessary to predict 2-3 large difference samples before the formal determination.

Operation Equipment: Spectrophotometer/ Microplate reader

Cat No: BC4595 **Size:** 100T/48S

Components:

Extracting solution: Liquid 30 mL×1. Storage at -20°C.

Reagent I: Powder ×2. Storage at -20°C.

Reagent II: Liquid 5 mL×2. Storage at 4°C.

Reagent III: Liquid 12 mL×1. Storage at 4°C.

Reagent IV: Liquid 15 mL×1. Storage at 4°C.

Reagent V: Powder ×1. Storage at 4°C. Before use, add 4 mL of distilled water, fully dissolve, and store the unused reagent at 4°C for two weeks.

Reagent VI: Powder×1. Storage at 4°C. Before use, add 4 mL of distilled water, fully dissolve, and store the unused reagent at 4°C for two weeks.

Reagent VII: Liquid 4 mL×1. Storage at room temperature.

Standard solution: Powder×1. Storage at 4°C. 8 mg of phosphorus standard. Before use, 4.6 mL of Reagent IV is added to prepare a standard solution of 10 µmol/mL. After dissolution, the solution is stored at 4°C.

Preparation of working solution: Reagent I is added into a bottle of Reagent II to dissolve completely; the unused reagents are packed and stored at - 20°C for one week, and prepare when the solution will be used.

Preparation of phosphorus determination reagent: prepare according to the proportion of H₂O: Reagent V: Reagent VI: Reagent VII = 2:1:1:1, and the prepared phosphorus determination reagent shall be light yellow. If colorless, reagent fails; if blue, it is phosphorus pollution (please use how much to match as required).

Product Description:

5'-nucleotidase (5'-NT) is a kind of hydrolase with low substrate specificity, which can act on a variety of nucleotides. It widely exists in various plant, animal tissues, serum and plasma. 5'-NT is a special phosphate hydrolase, which acts on nucleoside-5'-phosphate such as AMP (adenosine-5'-phosphate or adenosine monophosphate) to produce inorganic phosphate and nucleoside. The activity of 5'-NT can be calculated by determining the content of inorganic phosphorus.

Reagents and Equipment Required but Not Provided:

Balance, Spectrophotometer/Microplate reader, desktop centrifuge, cryogenic centrifuge,

constant temperature water bath/constant temperature incubator, micro glass cuvette/96 well plate, transferpettor, mortar/homogenizer, ice, distilled water.

Procedure:

- **I. Sample preparation** (the sample size can be adjusted appropriately, and the specific proportion can be referred to the literature):
- 1. Tissue: The ratio of mass (g): volume of Extracting solution (mL) is 1:5-10 (it is recommended to weigh about 0.05 g and add 0.5 mL of Extracting solution), homogenize on ice, centrifuge at 4°C, 15000 g for 10 min, and place the supernatant on ice for testing.
- 2. Cells: The ratio of the number of cells (10⁴): the volume of distilled water (mL) is 500-1000:1 (it is recommended to add 0.5 mL distilled water to 5 million cells), the cells are broken by ice bath ultrasonic wave (power 300W, ultrasonic 3s, interval 7s, total time 3 min); then the cells are centrifuged at 4°C, 15000g for 10 min, and the supernatant is put on ice for testing.
- 3. Liquid: direct detection.

II. Determination procedure:

- 1. Preheat the Spectrophotometer/Microplate reader for 30 minutes, adjust the wavelength to 660 nm, set zero with distilled water.
- 2. The starch standard solution is diluted with Reagent IV to 0.96、0.48、0.24、0.12、0.06、0.03、0.015 μmol/mL.
- 3. Add reagents with the following list: (Operate in 1.5 mL EP tube)

(1) Enzymatic reaction

Reagent (µL)	Test tube	Control tube			
Sample	20	20			
Working solution	80	<u> </u>			
ortex mixing, 37°C (mammalian) or 25°C (plant and other) reaction for 30 min					
Reagent III	100	100			
Working solution		80			
Vortex mixing, 25°C, 8000 r	pm centrifugation for 10 min, take the	e supernatant for color reaction			

(2) Color reaction

Reagent (µL)	Test tube	Control tube	Standard tube	Blank tube
Supernatant	80	80	⊚ -	-
Standard		-	80	-
Reagent IV	-	- 60	SCIENC -	80
Phosphorus determination reagent	160	160	160	160

Vortex mixing, 40°C color for 10 min; take 200 μ L of reaction solution in micro glass cuvette/96 well plate, measure the absorbance value A at 660 nm, respectively record as A_T, A_C, A_S, A_B, calculate Δ A_S= A_S-A_B, Δ A_T=A_T-A_C (blank tube only needs to measure 1-2 times).

III. Calculation:

- 1. Drawing of standard curve: draw the standard curve with ΔA_S as y axis, and the standard solution concentration as x axis, and get the standard equation y=kx+b, and bring the ΔA into the equation to get x(μ mol/mL).
- 2. Calculation of 5'-NT activity
- (1) Calculated according to protein concentration

Unit definition: One unit of enzyme is defined as the amount of enzyme catalyzes the production of 1 nmol inorganic phosphorus per minute every milligram tissue protein in the reaction system.

5'-NT activity (U/mg prot) =
$$x \times V_{RT} \div (V_S \times Cpr) \div T \times 10^3 = 333.3 \times x \div Cpr$$

(2) Calculated by sample mass

Unit definition: One unit of enzyme is defined as the amount of enzyme catalyzes the production of 1 nmol inorganic phosphorus per minute every milligram tissue in the reaction system.

5'-NT activity (U/g mass) =
$$x \times V_{RT} \div (W \times V_S \div V_{ST}) \div T \times 10^3 = 166.67 \times x \div W$$

(3) Calculated by cell number

Unit definition: One unit of enzyme is defined as the amount of enzyme catalyzes the production of 1 nmol inorganic phosphorus per minute every 10⁴ cells in the reaction system.

5'-NT activity (U/10⁴ cell) =
$$x \times V_{RT} \div$$
 (cell number $\times V_S \div V_{ST}$) $\div T \times 10^3 = 166.67 \times x \div$ cell number

(4) Calculated according to volume of liquid:

Unit definition: One unit of enzyme is defined as the amount of enzyme catalyzes the production of 1 nmol inorganic phosphorus per minute every milliliter liquid in the reaction system.

5'-NT activity (U/mL) =
$$x \times V_{RT} \div V_S \div T \times 10^3 = 333.3 \times x$$

 V_S : sample volume added in enzymatic reaction, 0.02 mL; V_{RT} : total volume of enzymatic reaction, 0.2 mL; V_{ST} : volume added in Extracting solution, 0.5 mL; W: sample mass, g; Cpr: sample protein concentration, mg/mL; cell number: in tens of thousands; T: enzymatic reaction time, 30 min; 10^3 : unit conversion, 1 μ mol = 10^3 nmol.

Note:

When the absorbance value is greater than 1 or ΔA is greater than 1, it is suggested that the sample be diluted with Reagent IV before determination.

Experimental example:

1. Take 0.1g of mouse liver, and then take the sample for treatment. take the supernatant and operate according to the determination steps. Calculate with 96 well plate the $\Delta A_T = A_T - A_C = 0.449 - 0.334 = 0.115$, and bring the standard curve y=1.5514x+0.0038, calculate x=0.0717, calculate the enzyme activity according to the sample quality:

5'-NT activity (U/g mass) =333.3×x \div W=333.3×0.0717 \div 0.1=238.98 U/g mass.

2. Take 0.1 g of barnyard grass for sample treatment. take the supernatant and operate according to the determination steps. Calculate with 96 well plate $\Delta A_T = A_T - A_C = 0.245 - 0.196 = 0.049$, and bring in the standard curve y=1.5514x+0.0038, calculate x=0.0291, calculate the enzyme activity according to the sample quality:

5'-NT activity (U/g mass) =333.3 \times x \div W=333.3 \times 0.0291 \div 0.1=97.00 U/g mass.

Related products:

BC1140/BC1145 Creatine Kinase (CK) Activity Assay Kit

BC4420/BC4425 Pyrroline-5-carboxylic Acid Synthase (P5CS) Activity Assay Kit

BC1630/BC1635 Laccase Activity Assay Kit

BC2030/BC2035 Isocitrate Lyase (ICL) Activity Assay Kit

BC3170/BC3175 Acetate Kinase (ACK) Activity Assay Kit