

Glycosylated Serum Protein (GSP) Content Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Catalog Number: BC4940

Size: 50T/48S

Components:

Reagent	Size	Storage	
Reagent I	Solution 5 mL×1	4°C	
Reagent II	Solution 2 mL×1	4°C	
Reagent III	Solution 60 mL×1	4°C	
Reagent IV	Solution 5 mL×1	4°C	
Standard	Powder×1	4°C	

Solution preparation:

Standard solution: Add 0.8 mL Reagent II to prepare the 10 mmol/L DMF standard solution before use. Dilute the 10 mmol/L standard solution into the 4 mmol/L standard solution with Reagent II for test.

Product Description:

Serum glucose reacts non-enzymatically with the N-terminal amino group of albumin and other serum protein molecules to form a polymer ketamine structure. Under alkaline conditions, it reacts with nitrotetrachloroazole blue to produce formazan, a purple-red compound. Comparing the color at 530 nm wavelength, measuring its OD value. And comparing with DMF standard, the content can be obtained.

Reagents and Equipment Required but Not Provided:

Spectrophotometer, desk centrifuge, transferpettor, 1 mL glass cuvette, mortar/homogeniser, ice and distilled water.

Procedure

I. Sample preparation:

Serum (plasma): collecting bacteria or cells into the centrifuge tube. According to the ratio of Serum (plasma)volume (mL): Reagent I volume (mL) = 10:1. It is suggested to take about 0.5 mL serum (plasma) and add 0.05 mL of Reagent I. Mix thoroughly. Stay in 37°C for 30 min.

II. Determination procedure:

- 1. Preheat spectrophotometer for 30 minutes, adjust wavelength to 530 nm, set zero with distilled water.
- Standard solution: According to the ratio of Standard solution volume (mL): Reagent I volume (mL) = 10:1. It is suggested to take about 0.5 mL Standard solution and add 0.05 mL of Reagent I. Mix thoroughly. Stay in 37°C for 30 min.

BC4940 -- Page 1/2

3. Add reagents with the following list:

Reagent (µL)	Test tube	Blank tube	Standard tube	Standard blank tube
Sample	50	: °	-	- 3 J. F.
Distilled water	-	50	-	
Standard	- 5)	50	-
Reagent II	(2)	-	-1010	50
Reagent III	1000	1000	1000	1000
		Stay in 37°C for1	5 min;	
Reagent IV	50	50	50	50

Mix thoroughly. Take 1 mL to 1 mL glass cuvette. Measure the absorbance at 530 nm. Record as A_T , A_B , A_S , A_{SB} , $\Delta A_T = A_T A_B$, $\Delta A_S = A_S - A_{SB}$.

Note: Blank tube and Standard tube only need to test one~two times.

III. Calculations:

 $GSP(mmol/L) = C \times \Delta A_T \div \Delta A_S \times F$

C: Concentration of Standard solution, 4 mmol/L;

F: Dilution times.

Note:

- 1. After color development, please add Reagent IV immediately. It is recommended not to make too many samples at once.
- 2. If the measured absorbance value A>1.0 or Δ A>0.8, it is recommended to dilute the sample before measuring, and multiply the dilution factor in the calculation formula; if the measured absorbance value is low or close to the blank OD value, it is recommended to increase the sample volume before performing the measurement.

Experimental example

1. Take 0.5 mL mouse plasma and standard solution. Add 0.05 mL of Reagent I. Mix thoroughly. Stay in 37°C for 30 min. Follow the measurement procedure. Calculate $\Delta A_T = A_T - A_C = 0.315 - 0.002 = 0.313$. $\Delta A_S = A_S - A_{SB} = 0.29 - 0.092 = 0.198$. Calculate the content of glycated serum protein in mouse plasma according to the formula:

GSP (mmol/L) = $C \times \Delta A_T \div \Delta A_S = 4 \times 0.313 \div 0.198 = 6.323$ mmol/L

2. Take 0.5 mL horse serum and standard solution. Add 0.05 mL of Reagent I. Mix thoroughly. Stay in 37°C for 30 min. Follow the measurement procedure. Calculate $\Delta A_T = A_T - A_C = 0.098 - 0.002 = 0.096$. $\Delta A_S = A_S - A_{SB} = 0.29 - 0.092 = 0.198$. Calculate the content of glycated serum protein in mouse plasma according to the formula:

GSP (mmol/L) = $C \times \Delta A_T \div \Delta A_S = 4 \times 0.096 \div 0.1989 = 1.939$ mmol/L

BC4940 -- Page 2 / 2