

Beijing Solarbio Science & Technology Co.,Ltd. One-stop solution for life science research.

Nitric Oxide Synthase (NOS) Activity Assay Kit

Note: It is necessary to predict 2-3 large difference samples before the formal determination.

Operation Equipment: Spectrophotometer/Microplate reader

Cat No: BC5685

Size:100T/96S

Components:

Extract solution I: Liquid 110mL×1. Store at -20°C.

Extract solution II: Liquid 0.6mL×4. Store at -20°C. It is volatile and sealed immediately after use.

Buffer solution: Liquid 15mL×1. Store at 2-8°C.

Reagent I: Liquid 4mL×1. Store at 2-8°C.

Reagent II: Powder×1. Store at -20°C. It is in the glass bottle. Add 6mL Buffer solution before use. It can be stored at -20°C for 4 weeks after dispensing to avoid repeated freezing and thawing.

Reagent III: Liquid 30µL×1. Store at 2-8°C.

Reagent III working solution: Reagent III and Buffer solution are mixed by the ratio of 2µL: 198µL (200µL, 10T) to make Reagent III working solution according to sample number before use.

Reagent IV: Powder×1. Store at -20°C. Add 0.6mL Buffer solution before use. It can be stored at -20°C for 4 weeks after dispensing to avoid repeated freezing and thawing.

Reagent V: Powder×1. Store at -20°C. It is in the glass bottle. Add 2.4mL Buffer solution before use. It can be stored at -20°C for 4 weeks after dispensing to avoid repeated freezing and thawing.

Working solution: Reagent I, Reagent II, Reagent III working solution, Reagent IV and Reagent V are mixed by the ratio of 0.3mL: 0.5mL: 0.2mL: 0.05mL: 0.2mL (1.25mL, 10T) to make Working solution according to sample number before use.

Reagent VI: Liquid 1.5mL×1. Store at 2-8°C.

Reagent VII: Liquid 30µL×1. Store at 2-8°C.

Reagent VII working solution: Reagent VII and Buffer solution are mixed by the ratio of 5μ L: 225μ L(0.23mL, about 23T) to make Reagent VII working solution according to sample number before use.

Chromogenic solution A: Liquid 6mL×1. Store at 2-8°C.

Chromogenic solution B: Liquid 6mL×1. Store at 2-8°C.

Chromogenic solution: Chromogenic solution A and Chromogenic solution B are mixed by the ratio of 1: 1 to make Chromogenic solution according to sample number before use.

Standard: Liquid $1mL \times 1$, $10\mu mol/mL$ sodium nitrite solution. Store at 2-8°C. Mix $10\mu L$ $10\mu mol/mL$ sodium nitrite solution and $990\mu L$ distilled water to prepare a $0.1\mu mol/mL$ standard solution before use.

Note: Reagent II, Reagent IV and Reagent V are lyophilized powder. The differences in the amount of these powders may seem to be large, but the actual qualities are the same. It does not affect the

BC5680 -- Page 1 / 4

detection.

Product Description:

Nitric Oxide Synthase (NOS, EC 1.14.13.39) is a kind of enzyme that catalyzes the synthesis of NO from L-arginine in vivo. It mainly exists in vascular smooth muscle cells, macrophages, endothelial cells, nerve cells, liver cells, glomerular membrane cells and other cells. As a cell signal molecule, it plays a very important role in the nervous, immune and cardiovascular systems of the body.

NOS catalyzes L-arginine, molecular oxygen and NADPH to form NO and NADP⁺. NO is easily oxidized to form NO_2^- and NO_3^- in aqueous solution. Under acidic conditions, NO_2^- and diazonium sulfonamide produce diazo compounds. The compounds could further couple with naphthyl vinyl diamine. The product has a characteristic absorption peak at 550 nm and its absorbance value can be measured to calculate NOS activity.

Reagents and Equipment Required but Not Provided:

Spectrophotometer/Microplate reader, centrifuge, balance, transferpettor, mortar/homogenizer/cell ultrasonic crusher, micro glass cuvette/96 well plate, ice and distilled water.

Procedure:

I. Sample preparation

- 1. **Tissue:** It is suggested that 0.2 g of tissue with 0.98 mL of Extract solution I and 0.02 mL of Extract solution II and fully homogenized on ice bath. Centrifuge at 12000g for 15 minutes at 4°C to remove insoluble materials and take the supernatant on ice before testing.
- Bacteria/Cells: Collect bacteria/cells into the centrifuge tube, after centrifugation discard supernatant. It is suggested that add 0.98 mL of Extract solution I and 0.02 mL of Extract solution II to 10 million of bacteria/ cells. Use ultrasonication to split bacteria/cells (place on ice, ultrasonic power 200W, working time 3 seconds, interval 7 seconds, repeat for 5 minutes). Centrifuge at 12000g for 15 minutes at 4°C to remove insoluble materials and take the supernatant on ice for testing.
- 3. Liquid samples: Detect directly. Centrifuge before detecting if there are precipitation in the samples.

Note: Extract solution I and Extract solution II are mixed by the ratio of 0.98mL: 0.02mL to prepare according to sample number before use.

II. Determination

- 1. Preheat spectrophotometer/microplate reader for 30 min, adjust the wavelength to 550 nm and set spectrophotometer counter to zero with distilled water.
- 2. Add reagents in 1.5ml EP tube as the following:

Reagent (µL)	Test tube	Standard tube	Blank tube

BC5680 -- Page 2 / 4

For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.

Sample	60	-	-
Working solution	125		-
Mix and react at 37°C for 60min, bath at			2010
100°C for 5min and cool to room temperature.			CO13 Joint
Centrifuge at 11000g for 10 minutes at 4°C			S LIFE
and take all supernatant.			3
Supernatant	all supernatant	-	-

Reagent VI	10	- ¹	26.
Reagent VII working solution	10	-	Solatescienc
Mix and react at	37°C for 30min.	-	
Standard	CO SOLET	60	-
Distilled water	and the	145	205
Chromogenic solution	100	100	100

Mix and react for 10min at room temperature. Take 200 μ L reaction mixture, detect the absorbance value at 550 nm and record as A_T, A_S and A_B. Δ A_T=A_T-A_B. Δ A_S=A_S-A_B. Blank tube and standard tube need to test once or twice.

III. NOS activity calculation:

1. Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzymes catalyzes production of 1 nmol NO in the reaction system per minute every mg protein.

NOS activity (U/mg prot) = $(\Delta A_T \div \Delta A_S \times C_S) \times Vs \div (Vs \times Cpr) \times 10^3 \div T \times F$ =1.67× $\Delta A_T \div \Delta A_S \div Cpr \times F$

2. Sample weight:

Unit definition: One unit of enzyme activity is defined as the amount of enzymes catalyzes production of 1 nmol NO in the reaction system per minute every g sample.

NOS activity (U/g weight) = $(\Delta A_T \div \Delta A_S \times C_S) \times Vs \div (W \times Vs \div V_T) \times 10^3 \div T \times F$ =1.67× $\Delta A_T \div \Delta A_S \div W \times F$

3. Bacteria/Cells number:

Unit definition: One unit of enzyme activity is defined as the amount of enzymes catalyzes production of 1 nmol NO in the reaction system per minute every 10⁶ bacteria/cells.

NOS activity (U/10⁶ cell) = $(\Delta A_T \div \Delta A_S \times C_S) \times Vs \div (N \times Vs \div V_T) \times 10^3 \div T \times F$ =1.67× $\Delta A_T \div \Delta A_S \div N \times F$

4. Liqiud volume:

Unit definition: One unit of enzyme activity is defined as the amount of enzymes catalyzes production of 1 nmol NO in the reaction system per minute every milliliter liquid sample.

BC5680 -- Page 3 / 4

NOS activity (U/mL) = $(\Delta A_T \div \Delta A_S \times C_S) \times Vs \div Vs \times 10^3 \div T \times F = 1.67 \times \Delta A_T \div \Delta A_S \times F$ C_s: sodium nitrite concentration of standard solution, 0.1µmol/mL;

Vs: Added sample supernatant volume, 0.06 mL;

V_T: Added volume of Extract solution I and Extract solution II, 1mL;

Cpr: Sample protein concentration, mg/mL;

W: Sample weight, g;

N: Cell amount, 10⁶ for one unit;

10³: Unit conversion factor, 1µmol=10³ nmol;

- T: Reaction time, 60 min;
- F: Dilution factor

Note:

- 1. NOS is not stable and easy to inactivate. It is recommended to use fresh samples for experiments and stored at -20°C for fresh samples if not tested immediately.
- 2. The prepared Reagent II need to be stored at -20°C after taking out the required volume according to the sample number.
- 3. If ΔA_T is less than 0.005, or A_T is closed to A_B , it is recommended to increase added sample supernatant volume or prolong time of the first reaction at 37°C before determination. If ΔA_T is more than 0.5, it is recommended to dilute the sample with Buffer solution before determination. And modify the calculation formula.

Experimental example:

1. Take 0.2075g mice brain, add 0.98 mL of Extract solution I and 0.02 mL of Extract solution II, grind the homogenate with ice bath. Then operate according to the determination steps, calculate $\Delta A_T = A_T - A_B = 0.087 - 0.046 = 0.041$, $\Delta A_S = A_S - A_B = 0.519 - 0.046 = 0.473$. The result is calculated according to the sample weight:

NOS activity (U/g weight) = $1.67 \times \Delta A_T \div \Delta A_S \div W = 0.698$ U/g weight.

2. Take 0.5×10^6 cell K562, add 0.98 mL of Extract solution I and 0.02 mL of Extract solution II, extract by ultrasonication. Then operate according to the determination steps, calculate $\Delta A_T = A_T - A_B = 0.099 - 0.046 = 0.053$, $\Delta A_S = A_S - A_B = 0.519 - 0.046 = 0.473$. The result is calculated according to cell number:

NOS activity (U/10⁶ cell) = $1.67 \times \Delta A_T \div \Delta A_S \div N = 0.374 \text{ U}/10^6 \text{ cell}$.

3. Take 60µL horse serum and operate according to the determination steps, calculate $\Delta A_T = A_T - A_B = 0.069 - 0.046 = 0.023$, $\Delta A_S = A_S - A_B = 0.519 - 0.046 = 0.473$. The result is calculated according to liquid volume:

NOS activity (U/mL) =1.67× ΔA_T ÷ ΔA_S =0.081 U/mL.

References :

[1] List BM, Klösch B, Völker C. et al. Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity:

BC5680 -- Page 4 / 4

tetrahydrobiopterin binding kinetics and role of haem in dimerization[J]. Biochemical Journal, 1997, 323(1): 159-165.

[2] Dawson J, Knowles RG. A microtiter-plate assay of nitric oxide synthase activity[J]. Molecular Biotechnology, 1999, 12(3): 275-279.

[3] Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function[J]. European Heart Journal, 2012, 33(7): 829-837.

Related Products:

BC0080/BC0085	Nitrate reductase (NR) Activity Assay Kit
BC1470/BC1475	Nitric Oxide (NO) Content Assay Kit
BC5480/BC5485	Nitric Oxide (NO) Content Assay Kit
BC5690/BC5695	Nitric Oxide Synthase (NOS) Typed Activity Assay Kit

BC5680 -- Page 5 / 4

 Tel: 86-010-50973105
 https://www.solarbio.net
 E-mail: info@solarbio.com

For research use only. Do not use for clinical, diagnostic, food, cosmetic testing and other purposes.